TY - BOOK AU - Valdemar Cuevas,Erik TI - Introducción al machine learning con MATLAB SN - 9788426732828 U1 - 005.3 23 PY - 2021/// CY - Bogotá PB - Marcombo KW - MATLAB (Programa para computador) KW - Aprendizaje automático (Inteligencia artificial) KW - armarc KW - Inteligencia computacional N1 - Incluye índice; Incluye referencias bibliográficas al final de cada capítulo; Capítulo 1. Fundamentos del Machine Learning. -- Capítulo 2. Bases matemáticas. -- Capítulo 3. Clasificación. -- Capítulo 4. Regresión lineal. -- Capítulo 5. Agrupamiento (clustering) -- Capítulo 6. Reducción de dimensionalidad. -- Capítulo 7. Métodos unidos. -- Capítulo 8. Reconocimiento de objetos. -- Capítulo 9. Estadística inferencial. -- Capítulo 10. Evaluación de desempeño N2 - El Machine Learning representa una herramienta importante para la exploración y la extracción de conocimiento. Su principal objetivo es construir modelos que permitan describir posibles patrones estructurales en la información a partir de los datos, con el objetivo de tomar decisiones o hacer predicciones. En la última década, el número de usuarios de Machine Learning ha crecido de forma espectacular, pero muchos han presentado grandes dificultades a la hora de generar un plan adecuado que les permita pasar de los conceptos fundamentales a la solución de problemas en sus áreas de interés. El objetivo de este libro es brindar una visión particular de los principales métodos de Machine Learning y de su implementación, es decir, proveer de los principales conceptos en los que se basan estos métodos y aplicarlos a problemas típicos del procesamiento de datos. El libro se fundamenta en MATLAB, el cual es considerado hoy en día como un estándar en la programación científica e industrial. MATLAB contiene, dentro de sus funciones, poderosos métodos numéricos que pueden ser adaptados a aplicaciones particulares. Bajo estas condiciones, el usuario puede estar más concentrado en la estructura de su aplicación que en la programación misma ER -